Τελευταια Νεα

26 Ιουν. 2020

Σχεδίαση & υλοποίηση δικτυακού τόπου για την επιχείρηση Aggelos Kastoris Photography από την Antwork Πληροφορική.

διαβάστε περισσότερα...


18 Ιουλ. 2019

Σχεδίαση & υλοποίηση δικτυακού τόπου για την επιχείρηση Faidra Olive Grove Luxury Villa από την Antwork Πληροφορική.

διαβάστε περισσότερα...


29 Οκτ. 2018

Σχεδίαση & υλοποίηση δικτυακού τόπου για την επιχείρηση DiTsi Photography από την Antwork Πληροφορική.

διαβάστε περισσότερα...


20 Νοε. 2017

Σχεδίαση & υλοποίηση δικτυακού τόπου για την επιχείρηση Περιβαλλοντολόγοι Energy από την Antwork Πληροφορική.

διαβάστε περισσότερα...


20 Απρ. 2015

Σχεδίαση & υλοποίηση δικτυακού τόπου για την επιχείρηση Oxytools από την Antwork Πληροφορική.

διαβάστε περισσότερα...


Κοινωνικα Δικτυα

Description

#Calchas requires a corpus of 100 documents to begin its analysis procedures effectively. The storage mechanism in #Calchas is so thorough that the document files are not required after entry into the system, even if the corpus size has not been reached (and thus the documents have not been analysed yet).

By storing the document metadata, #Calchas aims to cover the needs of data mining and knowledge extension procedures. In effect, #Calchas prides itself in providing the user with a fast and effective method of storing only the most essential information of a document. This information is then used to draw useful conclusions about the document content and its relevance to other documents and hence to facilitate retrieval and knowledge extension features.

Another important reason for using document metadata for further analysis purposes is the immense amelioration in result retrieval speed. In fact, the method used for document indexing implies that the time-consuming task of document analysis and summarisation only takes place once, during the document entry into the system. This means that any query on the document’s contents will only need to search through the metadata that was produced by the analysis mechanism. Consequently, the quality of the query results relies heavily on the quality of the analysis mechanism and this is where we mainly focused in the development stage. To this effect, #Calchas makes full use of the excellent capabilities of SQL in terms of query speed and combines these with the versatility of a programming language to create an efficient and usable environment for document storage and retrieval.

 #Calchas also includes an extremely useful feature, the “Relevance Network”. The Relevance Network is a knowledge extension model that begins from a given document and branches out to possibly relevant documents using a relevance algorithm that makes use of the document metadata.  The Relevance Network and the search module are clear demonstrations of how the query result speed allows the implementation of mechanisms that make better use of the corpus than existing full content search engines. They show the immense possibilities that #Calchas has, given the unique and innovative algorithms it implements in its features